
Modulo SDC Scheduling with Recurrence

Minimization in High-Level Synthesis

Andrew Canis, Stephen D. Brown, and Jason H. Anderson

ECE Department, University of Toronto, Toronto, ON, Canada

{acanis, brown, janders}@eecg.toronto.edu

Abstract—

Loop pipelining is a high-level synthesis scheduling technique
that overlaps loop iterations to achieve higher performance.
However, industrial designs often have resource constraints and
other constraints imposed by cross-iteration dependencies. The
interaction between multiple constraints can pose a challenge
for HLS modulo scheduling algorithms, which, if not handled
properly can lead to a loop pipeline schedule that fails to achieve
the minimum possible initiation interval. We propose a novel
modulo scheduler based on an SDC formulation that includes a
backtracking mechanism to properly handle multiple scheduling
constraints and still achieve the minimum possible initiation
interval. The SDC formulation has the advantage of being a
mathematical framework that supports flexible constraints that
are useful for more complex loop pipelines. Furthermore, we
describe how to specifically apply associative expression trans-
formations during modulo scheduling to restructure recurrences
in complex loops to enable better scheduling. We compared our
techniques to existing prior work in modulo scheduling in HLS
and also compared against a state-of-art commercial tool. Over a
suite of benchmarks, we show that our scheduler and proposed
optimizations can result in a geomean wall-clock time reduction
of 32% versus prior work and 29% versus a commercial tool.

I. INTRODUCTION

Over the past decades, Field-Programmable Gate Arrays
(FPGAs) have continued to march along the path of Moore’s
law by growing exponentially denser. This growth has made
the daunting task of programming these large devices increas-
ingly difficult for hardware engineers. High-Level Synthesis
(HLS) is one proposed solution to simplify FPGA design by
allowing an engineer to specify an application in a high-level
language, such as C, that can be synthesized automatically into
hardware.

In many C applications, the majority of run time is spent ex-
ecuting critical loops. This paper focuses on an important high-
level synthesis scheduling technique called loop pipelining,
which exploits parallelism across loop iterations to generate
hardware pipelines. Loop pipelining increases parallelism and
hardware utilization, creating circuits similar to hand-coded
hardware architectures.

Loop parallelism is limited by cross-iteration dependencies
between operations in the loop called recurrences. Recurrences
can prevent the next iteration of a loop from starting in parallel
until data from a prior iteration has been computed, for in-
stance an accumulation across iterations. The second limitation
is due to user-imposed resource constraints, e.g. only allowing
one floating point adder in the design. These constraints can
significantly impact the final loop pipeline throughput.

State-of-the-art HLS scheduling uses a mathematical
framework, called a System of Difference Constraints (SDC)
to describe constraints related to scheduling [1]. The SDC
framework is flexible and allows the specification of a wide
range of constraints such as data and control dependencies,
relative timing constraints for I/O protocols, and clock period
constraints. Although loop pipelining has been well studied in
HLS, until recently, the SDC approach had not been applied
to scheduling loop pipelines due to non-linearities caused
by describing the resource constraints in modulo scheduling.
Recent work in [2] has extended the SDC framework to handle
loop pipelining scheduling by using step-wise legalization to
handle resource constraints. This new SDC approach offers
compelling advantages over prior methods of modulo schedul-
ing by providing the same mathematical framework for a
wide range scheduling constraints. However, there are issues
applying this approach to more complex loops, particularly the
class of loops that contain a combination of recurrences and
resource constraints.

The focus of this paper is a novel algorithm for modulo
loop scheduling using the SDC framework. Our contribution
is a new modulo scheduling algorithm that uses backtracking
to handle complex loops with competing resource and depen-
dency constraints, as can be expected in commercial hardware
designs. This new scheduling approach significantly improves
the performance of loop pipelines compared to prior work by
scheduling pipelines at their optimal minimum initiation in-
terval even when the loops have complex constraints. Further-
more, our scheduler is based on the SDC formulation allowing
for a flexible range of user constraints. We also describe how
to apply well-known algebraic transformations to the loop’s
data dependency graph using operator associativity to reduce
the length of recurrences. These associative transformations
have already been widely applied for balancing the tree height
of expression trees in HLS. However, a loop containing recur-
rences must be restructured differently to minimize the length
of the loop recurrences. This idea has been previously studied
in the DSP domain but to the author’s knowledge, has not yet
been widely applied in HLS.

The remainder of this paper is organized as follows:
Section II presents related work. Section III gives an overview
of loop pipelining and introduces a motivating example. Sec-
tion IV describes our modulo SDC scheduling algorithm. Sec-
tion V discusses our data dependency restructuring transfor-
mations to reduce loop recurrence cycles. Section VI presents
an experimental study and Section VII draws conclusions.



II. RELATED WORK

In high-level synthesis, scheduling is the task of ordering
operations into clock cycles, or control steps, such that all
program data dependencies and resource constraints are sat-
isfied. In the presence of resource constraints, scheduling is
an NP-hard problem that can be solved with integer linear
programming [3] or approximated by various heuristics [4],
[5]. The work in [1] has formulated the scheduling problem
as a linear programming problem in which constraints are
specified in a flexible system of difference constraints (SDC)
form. However, the authors did not describe how to support
loop pipelining in their formulation.

Loop pipelining can be performed using software pipelin-
ing, a compiler technique traditionally aimed at Very Long
Instruction Word (VLIW) processors [6]. VLIW processors can
execute multiple instructions in the same clock cycle allowing
them to exploit instruction-level parallelism. Software pipelin-
ing uncovers instruction-level parallelism between successive
iterations of a loop, and reschedules the instructions to exploit
these opportunities. One common software pipelining heuristic
is called Iterative Modulo Scheduling (IMS) [7], which has
been adapted for loop pipelining in high-level synthesis by
PICO [8], C-to-Verilog [9], and also by LegUp [10]. Iterative
modulo scheduling combines list-scheduling, backtracking,
and a modulo reservation table to reorder instructions from
multiple loop iterations into a pipelined schedule. IMS, in its
original form [7], did not consider HLS operator chaining, as
chaining is not applicable to VLIW architectures. The authors
of the HLS tool PICO [11] studied the impact of adding
chaining capability to IMS, which is non-trivial and requires
adding an approximate static timing analysis to the inner loop
of the algorithm. However, they focused on area improvements
assuming a fixed initiation interval and did not consider the
impact of chaining on loop recurrences.

Recently, a heuristic using SDC-based scheduling to per-
form modulo scheduling was proposed [2]. This work used an
SDC-based scheduling formulation with an objective function
to minimize register pressure and compared the register usage
to swing modulo scheduling [12]. Their scheduling algorithm
is similar to the one proposed in this paper but uses a greedy
heuristic to choose operations to be scheduled, prioritizing
operations that minimize the impact on operations still to be
scheduled. We take an alternative approach by abandoning
any infeasible partial schedules and then backtracking by
attempting other possible scheduling combinations.

The work in [13] presents a method for incrementally re-
ducing the height of an expression tree from O(n) to O(logn) in
high-level synthesis. They focus on incrementally reducing the
height of the longest path to eventually balance the height of
the entire expression tree. However, they did not consider ap-
plying the method to recurrences during loop pipelining. Tree
height restructuring has also been investigated for software
pipelining in the Cydra compiler [14], however they targeted
a rotating register ILP processor without considering a flexible
high-level synthesis architecture. The work in [15] presents an
approach of using algebraic transformations to restructure a
data flow graph, while performing retiming, given input and
output arrival times for each node in a streaming application.
Their work is the most similar to the transformations discussed
in this paper, but we focus on the specifics of how to apply
these transformations to modulo scheduling in HLS.

load a[i]sum

i

(a)

+

++

load a[0]

+

+ +

3

load a[1]

1 20 4 5 6

sum

Cycle:

load a[2]

i=0 i=1 i=2

sum=0

(b) Loop pipeline schedule

Fig. 1. Loop pipelining with a recurrence

III. MOTIVATION

A. Loop Pipelining Overview

Modulo scheduling rearranges the operations from one
iteration of the loop into a schedule that can be repeated
at a fixed interval without violating any data dependencies
or resource constraints. This fixed interval between starting
successive iterations of the loop is called the Initiation Interval
(II) of the loop pipeline. The best pipeline performance and
hardware utilization is achieved with an II of one, mean-
ing that successive iterations of the loop begin every cycle,
analogous to a MIPS processor pipeline. If the first iteration
of the pipelined loop takes T cycles to complete, then the
total number of cycles required to complete the loop is
T + (N − 1) × II ≈ N × II , where N is the number of
iterations. Consequently, minimizing the initiation interval can
significantly improve pipeline performance.

Loop recurrences can increase the initiation interval re-
quired for a feasible pipeline schedule. Fig. 1(a) illustrates the
data dependency graph of a loop performing an accumulation
across iterations: sum = sum+a[i]+ i, where every addition
takes one clock cycle to complete. In this case, sum in the
current iteration has a loop-carried dependency on the sum
calculated in the previous iteration, therefore the loop contains
a recurrence, indicated by the cycle in the data flow graph.
Consequentially, after loop pipelining, the schedule shown in
Fig. 1(b) shows that each successive loop iteration can begin
every two cycles. The recurrence prevents us from the ideal
case of scheduling a loop iteration every clock cycle.

In general, we can calculate the minimum recurrence
constrained initiation interval (recMII) in the following man-
ner: for every loop recurrence i, we take the clock cycle
latency along the path, delayi, and divide by the dependency
distance of the recurrence, distancei, and round up. The
dependency distance is the number of iterations separating
the destination operation from the source operation of the
recurrence back edge. The recMII is calculated by taking
the maximum over all recurrences in the dependency graph:
recMII = maxi ⌈delayi/distancei⌉.

Resource constraints can also limit the minimum initiation
interval. For instance, if we schedule a loop pipeline with
three multiply operations but with only one multiplier unit
in the datapath, we must wait three cycles before starting
each new loop iteration. In general, we calculate the resource
constrained minimum II (resMII) by taking every resource
type, i, and calculating the number of operations in a loop
iteration using that resource, #opsi, divided by the number
of functional units available, #FUi, and round that up to the
nearest integer. We take the maximum over all resource types
to give us: resMII = maxi ⌈#opsi/#FUi⌉. Many resources
are typically unconstrained in HLS, for instance adders, in
contrast to general purpose processors which have a fixed
number of functional units.



The modulo scheduling algorithm begins by calculating a
lower bound on the initiation interval called the minimum II
(MII). Any legal schedule must have an II greater than or
equal to the MII, but the MII is optimistic and may not be
feasible. We calculate the MII by taking the maximum of
both the resource constrained MII (resMII) and the recurrence
constrained MII (recMII), MII = max(resMII, recMII).

The SDC formulation models the scheduling problem as
a Linear Programming (LP) problem with variables modeling
the scheduled start and end time of each operation. The form
of all SDC constraints are: si − sj ≤ C, where si and
sj are linear programming variables representing operation
start or end control steps and C is a constant integer. In
this form, the constraints matrix is totally unimodular by
construction, which guarantees an integer solution to the linear
programming problem. Given a feasible SDC, we can quickly
and incrementally determine whether adding a new constraint
would make the new system infeasible [16]. This incremental
approach works by maintaining a constraint graph, with a
vertex for every SDC variable and an edge, sj− > si, for every
constraint with a weight of C. If there are any negative cycles
in the constraint graph then the SDC system is infeasible.
We can construct data dependency constraints in the SDC
formulation to enforce cycle latencies between operations. The
linear programming objective function is usually to minimize
the start time of each operation to achieve an As-Soon-As-
Possible (ASAP) schedule: min

∑
i si.

B. Greedy Modulo Scheduling Example

In this section, we will illustrate greedy modulo scheduling
for a loop containing both cross-iteration dependencies that
cause recurrences in the loop data flow graph and also re-
source constraints. A greedy modulo scheduling algorithm will
not achieve an optimal schedule with the minimum possible
initiation interval if we schedule an operation to a particular
time step that later turns out to be wrong. Therefore, greedy
scheduling is highly dependent on our chosen priority ordering
function.

We present the loop data dependency graph given in
Fig. 2(a). We have labeled the operations A, B, C, and D
for convenience. The directed edges in the graph represent
data dependencies between operations and the edge labels
indicate the required clock cycle latency between operations.

load a[i] load b[i]

store a[i+1]

2

1 [1]

2

0

BA

C

D

(a) Dependency
Graph

load a[0]

store
a[1]

+ +

Cycle: 0 1 2 3

load b[1]

load a[1]

4 5 6

load b[0]

a[2]
store

Port Conflict

(b) Greedy Modulo Scheduling

load a[0] load a[1]

store
a[1]

+ +

a[2]
store

Cycle: 0 1 2 3

load b[1]

4 5 6

load b[0]

7

(c) Optimal Modulo Schedule

Fig. 2. SDC Modulo Scheduling for II=3

We assume memory latencies of two cycles for a load and
one cycle for a store, and we allow the adder to be chained
with zero latency. The back edge from node D to node A
represents a cross-iteration data dependency with a dependency
distance of one (next iteration) labeled in square brackets. The
total delay along the recurrence is three cycles, therefore the
recMII is three (⌈delay/distance⌉ = ⌈3/1⌉ = 3). We assume
one memory port giving a resMII of three (⌈#ops/#FU⌉ =
⌈3/1⌉ = 3).

Modulo scheduling specifies that an operation scheduled at
time t will be repeated every II clock cycles. Given resource
constraints, we keep track of available resources using a table,
where each row tracks a resource and each column is an
available time slot. When we schedule an operation at time
t, we reserve a single time slot in column t mod II of the
table and in the appropriate resource row. Consequently the
table is called the modulo reservation table (MRT) and has
II time slot columns. Returning to the example, the minimum
II is three and the MRT has three time slots available for the
memory in Fig. 2(a).

First, we will attempt to greedily modulo schedule the loop.
We will schedule operations prioritized in order of perturba-
tion, a typical priority function [2], which gives precedence
to operations that will most impact the schedule when moved.
Therefore, the order of precedence is B (affecting C, D, and
A), followed by A, and then D. First we schedule B into time
step 0, and reserve the single memory port for that time. Next,
we attempt to schedule A into time step 0 but the memory
port is occupied by B, so we schedule A into the next time
step at time 1. However, after scheduling both loads, when we
attempt to schedule the store operation, we will have a memory
port conflict, as shown in Fig. 2(b). In this case, the greedy
approach fails to achieve the minimum initiation interval of
three. There is now no feasible place to schedule the store
operation due to the recurrence constraint and the previously
scheduled loads. At this point, we must give up and increase
the initiation interval to four and try again. However, we can
avoid this suboptimal greedy solution by unscheduling one
of the load operations and backtracking to find the schedule
shown in Fig. 2(c). This schedule is optimal and achieves
the minimum initiation interval of three. Generally, a greedy
modulo scheduler is only guaranteed to yield an optimal
schedule with an II equal to the minimum II if the loop has
only (1) simple recurrence circuits involving a single operation,
or (2) if each operation in the loop is pipelined with II=1 (no
multi-cycle operations), in all other cases greedy scheduling
may fail to find the optimal solution [7].

IV. MODULO SDC SCHEDULER

In this section, we describe our novel Modulo SDC Sched-
uler. We begin with a candidate II based on the pre-calculated
minimum II and increment the II when we fail to find a feasible
schedule. Given an II, we can use SDC-based scheduling to
quickly give us the control step for every operation in the
loop. An advantage we gain from the SDC formulation is the
support for operator chaining and frequency constraints. To
support modulo scheduling, we modify the SDC constraints
that specify dependencies between operations by adding an
additional term to account for loop recurrences. For two
dependent operations i→ j, the constraint becomes:

endi − startj ≤ II × distance(i, j) (1)



Here startj is the starting cycle time of operation j, and endi

is the cycle time when the output of operation i is available.
The dependency distance, which is the number of loop iter-
ations separating the dependency, is given by distance(i, j).
If there is no loop-carried dependency then the distance will
be zero and this constraint will reduce into a standard SDC
data dependency constraint. The loop initiation interval, II , is
fixed for each iteration of the algorithm. We also add SDC
timing constraints between operations to enforce a frequency
constraint during scheduling and to prevent excessive chaining
from lowering the desired clock period.

Unfortunately, resource constraints during modulo schedul-
ing cannot be modeled using the SDC-based linear program-
ming formulation due to the non-linearity of the modulo
reservation table. Therefore, we apply an iterative backtracking
approach to legalize the SDC modulo schedule. First, we ig-
nore all resource constraints and then we incrementally assign
each resource-constrained operation to a particular control step
in the schedule, depending on availability in the modulo reser-
vation table (MRT). In some cases, after fixing one or more
resource constrained operations, the schedule will no longer
be feasible, in which case we backtrack by unscheduling the
tentatively scheduled operations and resuming our attempts.

Algorithm 1 MODULO SDC SCHED(II, budget)

1: Schedule without resource constraints to get ASAP times
2: schedQueue← all resource constrained instructions
3: while schedQueue not empty and budget ≥ 0 do
4: I ← pop schedQueue
5: time← scheduled time of I from SDC schedule
6: if scheduling I at time has no resource conflicts then
7: Add SDC constraint: tI = time
8: Update modulo reservation table and prevSched for I
9: else

10: Constrain SDC with GE constraint: tI ≥ time + 1
11: Attempt to solve SDC scheduling problem
12: if LP solver finds feasible schedule then
13: Add I to schedQueue
14: else
15: Delete new GE constraint
16: BACKTRACKING(I, time)
17: Solve the SDC scheduling problem
18: end if
19: end if
20: budget← budget− 1
21: end while
22: return success if schedQueue is empty otherwise fail

Algorithm 1 gives the pseudocode for our iterative algo-
rithm. The input to this function is the initiation interval and a
budget, which will be described shortly. First, we schedule the
loop without resource constraints and we save the ASAP time
for each operation. Next we initialize a queue of all resource
constrained operations. We take the first operation out of the
queue, which could be a priority queue based on height [7] or
perturbation [2] but neither is required due to backtracking.
However, having a good priority function will reduce the
execution time of the algorithm. Next, we check the MRT for
resource conflicts at the time step given by the SDC scheduler.
In the first iteration, the SDC time step will be identical to the
ASAP time calculated earlier. However, as we add constraints

to the SDC formulation, the SDC time steps may begin to
diverge from the ASAP times. If there are no MRT resource
conflicts then we tentatively assign the operation to that time
step by adding an equality constraint to the SDC formulation
and we update the MRT and the previous scheduled time for I
(lines 7–8). Otherwise, we try to reschedule with that operation
constrained to a greater time step (lines 10–11). If we find a
feasible schedule then we add this instruction back into the
queue for later scheduling (lines 12–13). If we cannot find
a feasible schedule (lines 15–17), then we backtrack by un-
scheduling one or more already scheduled resource constrained
instructions and then schedule the current instruction. This
process is continued until either a legal schedule is discovered
with all resource constrained instructions fixed to a specific
time slot or when a budgeted number of while loop iterations
have occurred, upon which we consider the current fixed II
to be infeasible and increment the II. The budget parameter
is equal to the budgetRatio× numInstructions, where we
have found empirically that a budgetRatio = 6 (as was also
found by [7]) works well to avoid excessive backtracking.

Algorithm 2 BACKTRACKING(I, time)

1: for minT ime =ASAP time of I to time do
2: SDC schedule with I at minT ime ignoring resources
3: break if LP solver finds feasible schedule
4: end for
5: prevSched← previous scheduled time for I
6: if no prevSched or minT ime ≥ prevSched then
7: evictT ime← minT ime
8: else
9: evictT ime← prevSched + 1

10: end if
11: if resource conflict scheduling I at evictT ime then
12: evictInst← instr. at evictT ime mod II in MRT
13: Remove all SDC constraints for evictInst
14: Remove evictInst from modulo reservation table
15: end if
16: if dependency conflict scheduling I at evictT ime then
17: for all S in already scheduled instructions do
18: Remove all SDC constraints for S
19: Remove S from modulo reservation table
20: Add S to schedQueue
21: end for
22: end if
23: Add SDC constraint: tI = evictT ime
24: Update modulo reservation table and prevSched for I

Algorithm 2 gives the pseudocode for our backtracking
stage, which takes as input an operation I to be scheduled
at control step time. First, we find a valid time slot while
ignoring resource constraints but considering data dependen-
cies (lines 1–4). Because we ignore resource constraints of the
partial SDC schedule, we will always find a minimum time
slot and break out of the loop on line 3. In lines 5–10, we
ensure forward progress by storing the previous scheduled time
(updated on line 24 or line 8 of Algorithm 1) of each operation
to prevent attempting a time step before that point. This
prevents two operations from displacing each other back and
forth during backtracking. We remove any resource conflicts at
the candidate scheduling time by unscheduling the tentatively
scheduled operations found in the MRT at that slot (lines
11–15). In some cases, the previous scheduling time pushes



TABLE I. ALGORITHM EXAMPLE (II=3)

Iter
MRT Slot SDC Time Sch. Time

I Description
0 1 2 B A D B A D

1 B 0 0 2 0 B Sched. tB = 0

2 B 0 1 3 0 A Conflict. tA ≥ 1

3 B A 0 1 3 0 1 A Sched. tA = 1

4 D A 0 1 3 1 3 D Evict B. tD = 3

5 D A 1 1 3 1 3 B Conflict. tB ≥ 1

6 D B 1 1 3 1 3 B Evict A. tB = 1

7 A 0 2 4 2 A Evict All. tA = 2

8 B A 0 2 4 0 2 B Sched. tB = 0

9 B D A 0 2 4 0 2 4 D Sched. tD = 4

forward the schedule time of an operation such that there is
also a data dependency conflict at the candidate time. In this
case, we unschedule all other operations to ensure forward
progress and add these operations back into the queue to be
rescheduled (lines 16–22). Finally, we schedule the operation
at the new time step by updating the MRT and previous
scheduled time for I, then we add an equality constraint to
the SDC formulation.

A. Detailed Scheduling Example

In this section, we walk through the exact steps of our
scheduling algorithm for the loop data flow graph previously
provided in Fig. 2(a). We begin Algorithm 1 by performing
SDC scheduling without resource constraints, giving us the
ASAP times: tA = 0, tB = 0, tC = 2, tD = 2. Here,
we assume schedQueue is prioritized by perturbation [2],
giving precedence to operations that will most impact the
schedule when moved—although this is not required. The
queue contains B (affecting C, D, and A), followed by A,
and then D. We skip C because adders are not resource
constrained. Table I provides record keeping for the end of
each iteration (first column) of the algorithm. The “MRT slot”
column lists the operations reserved in each time slot of the
memory MRT, the “SDC Time” column gives the operation
control steps under the current SDC constraints, “Sch. Time”
gives the tentatively scheduled time of each operation (blank
if not scheduled), “I” gives the current instruction I , and
“Description” summarizes what occurred during the iteration.

In the first iteration, we pop B off the queue and find no
resource constraints at time 0, so we add the SDC constraint
tB = 0 and reserve MRT slot 0. Next iteration, we try to
schedule A but find a resource conflict with B, so we update
the SDC with tA ≥ 1 and re-solve the linear program (LP).
Next, we schedule A at time 1 and reserve MRT slot 1. In
iteration 4, we try to schedule D at time 3 but MRT slot
0 (3 mod 3 = 0) is unavailable. We constrain tD ≥ 4 and
re-solve but the SDC constraints are infeasible due to the
recurrence with A. At this point a greedy algorithm would give
up and increment the II, as shown in Fig. 2(b). Instead, we call
BACKTRACKING(D, 3), where we calculate D’s minT ime to
be 3. Therefore, we evict B from the MRT at slot 0, and
we can now schedule D at time 3. Next iteration, we find
a resource conflict scheduling B at time 0, so we add the
constraint tB ≥ 1. In iteration 6, we try B at time 1 but
there is still a resource conflict, and tB ≥ 2 is not feasible
due to the recurrence. We call BACKTRACKING(B, 1) and get
minT ime = 0 but B has already been previously scheduled
at time 0, so we schedule B at time 1 and kick out A from the
MRT. In iteration 7, we have a resource conflict scheduling A
at time 1, tA ≥ 2 is infeasible, so we call BACKTRACKING(A,

a[i]

b[i]

c[i]

d[i]

e[i]

f[i]

g[i]

(a) Original
7 cycles/iter

b[i]a[i] c[i] d[i] e[i] f[i] g[i]

(b) Tree Height Reduction
3 cycles/iter

c[i]

d[i]

e[i]

f[i]

g[i]

a[i] b[i]

(c) Restructured
1 cycle/iter

Fig. 3. Dependency graph restructuring

1). A has been previously scheduled at time 1, so we schedule
at time 2 which conflicts with the recurrence so we evict
all other operations. The algorithm continues as shown in
Table I until we find a valid modulo schedule for II = 3
with tA = 2, tB = 0, tD = 4. At this point the SDC scheduled
time for operations without resource constraints is also valid,
in this case tC = 4 (the addition).

V. LOOP RECURRENCE OPTIMIZATION

Data flow graph transformations have been well-studied in
prior work [15], [14], [13]. We propose a targeted manner
of applying these transformations specific to HLS modulo
scheduling. The goal of these transformations is to reduce
the length of loop recurrence cycles in the loop data depen-
dency graph and improve the achievable initiation interval. To
illustrate, we will consider a loop that accumulates the sum
of seven arrays over all array indices: sum = sum + a[i] +
b[i]+ c[i]+ d[i]+ e[i]+ f [i]+ g[i]. Fig. 3(a) shows the default
data dependency graph assuming left-to-right associativity. The
dotted lines in the figure indicate control steps after scheduling,
where arrows that cross the dotted line require registers. For
this example, we assume that operator chaining is not allowed,
that is, every addition takes one clock cycle to complete.
In this case, sum in the current iteration has a loop-carried
dependency on the sum calculated in the previous iteration (a
dependency distance of one). The loop recurrence spans across
seven addition operations, having a path delay of seven clock
cycles. Therefore the minimum initiation interval of this loop
pipeline is seven cycles (recMII = ⌈7/1⌉ = 7).

The typical approach in HLS is to balance the expression
tree. For instance, we could use the tree height reduction
algorithm from [13] to obtain the height balanced tree in
Fig. 3(b). We have now reduced the path length of all inputs
to three cycles improving the minimum initiation interval to
three. While this loop pipeline is more than twice as fast as
Fig. 3(a), the minimum initiation interval is still constrained
by the loop recurrence.

In our proposed approach, we restructure the expression
tree to incur the least latency along the loop recurrence.
By targeting loop recurrences, we can focus on improving
the minimum initiation interval and consequently the loop
pipeline performance. First, we find all operations in the graph
that are contained within a loop recurrence. To determine all
recurrences in a loop’s data dependency graph, we solve the



a[i]

b[i]

(a) (sum + a[i]) + b[i]

a[i] b[i]

(b) sum + (a[i] + b[i])

Fig. 4. Incremental Associativity Transformation

equivalent problem of finding all elementary cycles in the
graph. An elementary cycle is a path through a graph where
the first and last vertices are identical and no other vertex
appears twice. All elementary cycles in a graph can be found
in polynomial time [17], and each cycle corresponds to a loop
recurrence. If the graph contains multiple recurrences, we rank
the recurrences by their respective impact on the initiation
interval. The rank of each recurrence is found by calculating
the recMII of the recurrence in isolation and then ranking the
recMII values from high (most critical) to low. Each operation
in a recurrence inherits this ranking.

Next, we apply transformations incrementally to the graph
to reduce the path length of recurrences. For example, Fig. 4(a)
shows the first two addition operations from the original data
dependency graph Fig. 3(a), corresponding to the expression:
(sum + a[i]) + b[i]. The left operand of the first addition
is part of the loop recurrence that we wish to improve. We
use associativity to restructure these two operations into an
algebraically equivalent expression, sum + (a[i] + b[i]), as
shown in Fig. 4(b). This transformation has reduced the length
of the recurrence by one cycle. In general, if we consider addi-
tions, an associative transformation involves two two-operand
operations that form a recurrence: late = lateParent +
earlyParent, and curOp = late + early. Here lateParent
and late are the critical edges along which the recurrence oc-
curs. In this case, we use the associative property of addition to
transform this into: curOp = lateParent + (earlyParent +
early). In this new expression, we have removed one addition
operation from the recurrence, leaving only lateParent.

Repeating this associative transformation incrementally,
we eventually obtain the restructured data dependency graph
in Fig. 3(c). In this new graph, instead of balancing the
height of the expression tree, our transformations have actually
lengthened some paths in the data dependency graph in order to
shorten the recurrence path. The loop recurrence now consists
of only one addition, therefore the new loop pipeline has an
initiation interval of one (assuming no resource constraints).
Due to the improvement in the initiation interval, this new
pipeline will have approximately seven times the throughput
of the original loop in Fig. 3(a) (II reduced from 7 to 1). Based
on this example, we can conclude that the structure of the data
dependency graph is critical for obtaining high performance
loop pipelines. These transformations are particularly effective
for recurrences containing multi-cycle operations, for example
floating point operations, which can cause long recurrence
lengths and are unaffected by operator chaining.

VI. EXPERIMENTAL STUDY

We implemented our new backtracking SDC mod-
ulo scheduler in the open-source high-level synthesis tool
LegUp [10], which is built within the LLVM compiler frame-
work [18]. LegUp supports loop pipelining of loops where the

loop bounds are known before the loop begins execution. The
loop body can contain multi-cycle operations such as floating
point or memory operations. Cross-iteration dependencies are
supported with conservative alias analysis. We also imple-
mented Zhang’s greedy modulo SDC scheduler [2] in LegUp
for comparison.

We evaluated our approach using five C benchmarks con-
taining a loop with the initiation intervals limited by both
loop recurrences and resource constraints, all of which are
synthesizable by LegUp and the commercial tool. Table II
provides a summary of the properties of each benchmark. All
benchmarks contain a tree of operations with a recurrence. The
“Balanced Restructuring” column gives the recurrence mini-
mum II (recMII), the resource MII (resMII), and the combined
minimum II (MII) for the default case of balanced expression
tree restructuring. The “Restructuring” column gives the same
metrics but after restructuring, as described in Section V.
The “Operations” column gives the number of additions,
floating point additions, multiplications, divisions, and memory
operations in the loop body. The “Constraints” column gives
the constraint on the number of functional units for adders,
floating point adders, multipliers, and memory ports, with an
X indicating no constraint. Although we restricted memories
to two ports in these benchmarks, memory is spread across
multiple independent block RAMs that can be accessed in
parallel. The “Distance” column gives the dependency distance
of the cross-iteration dependency in the loop. The “Total Instr”
column gives the total number of LLVM instructions in the
loop, most of which represent binary operations, to measure
the scheduling complexity of each benchmark. In Table II, we
can see that restructuring improved the recMII of faddtree from
26 to 13. This was caused when we restructured a floating point
addition with a latency of 13 away from the loop recurrence.

The benchmarks include golden input and output test vec-
tors, allowing us to synthesize the circuits with a built-in self-
test. We used these test vectors to simulate the circuits in Mod-
elSim and verify correctness. We targeted the Stratix IV [19]
FPGA (EP4SGX530KH40C2) on Altera’s DE4 board [20]
using Quartus II 11.1SP2 to obtain area and FMax metrics.
Quartus timing constraints were configured to optimize for the
highest achievable clock frequency.

We benchmarked against a state-of-the-art commercial
HLS tool configured to target a commercial FPGA similar to
Stratix IV. We used the default commercial tool options, which
include standard expression tree balancing. We configured
LegUp to use functional units with identical latency as the
commercial tool. We imposed a target clock period constraint
of 3ns (333MHz) on both HLS schedulers.

In our study, we consider four scenarios for comparison:
(1) A commercial HLS tool (Comm), (2) Zhang’s recently
published greedy modulo SDC scheduler [2] (Zha), (3) Our
proposed backtracking SDC modulo scheduler (Back), and (4)
Our scheduler combined with data dependency graph associa-
tive restructuring (Back+R). Table III gives speed performance
results for these four scenarios. The “Initiation Interval” col-
umn is the scheduled II of the loop pipeline. The “Cycles”
column is the total number of cycles required to complete the
benchmark. The “FMax” column provides the FMax of the
circuit given by the Quartus. The “Time” column gives the
circuit wall-clock time: Cycles · (1/FMax). Ratios in the
table compare the geometric mean (geomean) of the column



TABLE II. BENCHMARK LOOP PROPERTIES

Balanced Restructuring Restructuring Operations Constraints

Benchmark recMII resMII MII recMII resMII MII +/fadd/*/%/[] +/fadd/*/%/[] Distance Total Instr

faddtree 26 23 26 13 23 23 0/21/0/0/22 X/1/X/X/2 1 80

adderchain 2 2 2 2 2 2 40/0/0/0/26 X/X/X/X/2 1 92

multipliers 2 2 2 2 2 2 6/0/2/0/10 X/X/2/X/2 1 30

dividers 2 2 2 2 2 2 11/0/0/4/13 X/X/X/X/2 1 72

complex 3 3 3 3 3 3 16/0/7/2/27 X/X/3/X/2 9 98

TABLE III. SPEED PERFORMANCE RESULTS

Initiation Interval Cycles Fmax (Mhz) Time (µs)

Benchmark Comm Zha Back Back+R Comm Zha Back Back+R Comm Zha Back Back+R Comm Zha Back Back+R

faddtree 36 34 26 23 1539 1439 1128 1045 257 229 248 233 5.99 6.28 4.55 4.48

adderchain 4 3 2 2 372 297 209 209 270 239 194 234 1.38 1.24 1.08 0.89

multipliers 3 3 2 2 292 294 206 207 540 485 545 511 0.54 0.61 0.38 0.41

dividers 4 3 2 2 261 230 152 152 236 261 270 270 1.11 0.88 0.56 0.56

complex 4 5 3 3 454 550 382 382 269 211 232 232 1.69 2.61 1.65 1.65

Geomean 5.9 5.4 3.6 3.5 456 437 309 305 299 271 277 281 1.53 1.61 1.11 1.09

Ratio 1 0.92 0.62 0.6 1 0.96 0.68 0.67 1 0.91 0.93 0.94 1 1.05 0.73 0.71

to the respective geomean in the commercial tool.

The results show that our backtracking modulo SDC
scheduling approach can have a significant impact on loop
pipelines with resource constraints combined with recurrences.
Based on our experiments, the commercial tool is using a
greedy modulo scheduler for loop pipelining because their
schedule cannot achieve the minimum II for these benchmarks.
Consequently, our approach achieved a geomean reduction
in II by 38% versus the commercial tool. Furthermore, with
restructuring we were able to improve this to a 40% reduction
in geomean II. We also see that our backtracking approach
achieves an average geomean improvement of 33% over
Zhang’s greedy approach.

Backtracking SDC modulo scheduling reduced the ge-
omean cycle time by 32% versus the commercial tool and by
29% versus Zhang. The cycle time improvement was less than
the reduction in II due to time spent outside the loop pipeline
in these benchmarks. The geomean FMax decreased by 7%
versus the commercial tool when applying our approach, due
to better balanced expression restructuring by the commercial
tool. When restructuring along recurrences, we chain fewer
operations, causing the geomean FMax to increase by 2%.
Overall, the geomean wall-clock time for these benchmarks
was reduced by 32% using backtracking and restructuring
versus greedy SDC modulo scheduling. When compared to the
commercial tool, our backtracking and restructuring approach
improves geomean wall-clock time by 29%. This improvement
is mainly due to a reduction in II caused by better scheduling
of our SDC modulo scheduler when compared to greedy
scheduling.

Table IV gives the area and runtime results for the four
scenarios. The “ALUTs” and “Registers” columns give the
number of Stratix IV combinational ALUTs and dedicated
registers required. The “Tool Runtime” gives the time in
seconds for each algorithm to run, this includes the entire
flow from C to Verilog. Ratios in the table compare the
geometric mean (geomean) of the column to the respective
geomean in the commercial tool. Comparing our approach to
the commercial tool in terms of area, the geomean combi-
national ALUTs increased by 9% and the geomean registers
increased by 60%. The registers increased due to a lower II
in pipelines generated by our approach allowing less register
sharing. Comparing our approach to Zhang’s in terms of area,
the geomean combinational ALUTs decreased by 12% and the
geomean registers decreased by 8%.

A. Runtime Analysis

Now we present a runtime characterization of our new
backtracking approach versus the other scheduling algorithms.
First, the runtime results in Table IV show that our back-
tracking scheduler had 41% less geomean runtime than the
commercial tool but we had a 43% increase in runtime when
using restructuring. Our scheduling algorithm’s runtime is
influenced by the number of invocations of the linear program
solver, which is proportional to the number of instructions in
the loop being scheduled.

We would like to know the typical range of instructions
found in a loop to be pipelined by HLS. The MediaBench
II Video benchmark suite [21] is representative of modern
and emerging multimedia DSP applications (MPEG-4, JPEG-
2000, H.264) with applications that typically have extensive
instruction level parallelism. A study of workload charac-
teristics [21] found that the average instructions per basic
block in MediaBench was 9.4 instructions, with a maximum
of 61 instructions in a single basic block. We performed a
characterization of the CHStone [22] benchmarks and found
the median instructions per basic block was 4, while the
median instructions per loop was 24. Across the CHStone
suite, a single basic block contained a maximum of 378
instructions and a maximum of 805 instructions in a single
loop. We assume that a loop containing many basic blocks
could be merged into one hyperblock using if-conversion [23].
Therefore, we will perform runtime analysis of our algorithm
for basic blocks of size up to 1000 instructions.

For this experiment, we used the adderchain benchmark
and duplicated the body of the loop N times, where N ranged
from 1 to 12, and added a final summation after the loop.
Each additional duplication introduced another recurrence into
the loop pipeline and increased the number of instructions
by 79 instructions. Fig. 5 shows the runtime in seconds for
each algorithm as the number of instructions in the loop
increases. By default, we solved the SDC problem using a
linear programming solver [24]. We also analysed the runtime
taken when efficiently solving the SDC problem incrementally
after modifying the constraints as described in [16]. The
lines marked with “(incremental SDC)” show these results.
However, we found the runtime difference to be minor, leading
us to believe that the LP solver is quite optimized. Here
we see that our backtracking algorithm’s runtime increases
substantially compared to the commercial tool as the number
of instructions grow, but the absolute runtime is still about



TABLE IV. AREA AND RUNTIME RESULTS

ALUTs Registers Tool Runtime (s)

Benchmark Comm Zha Back Back+R Comm Zha Back Back+R Comm Zha Back Back+R

faddtree 1266 1676 1629 1638 2305 2175 2240 2374 16 34 9 59

adderchain 857 1190 1110 1108 929 1857 2178 2114 6 6 4 10

multipliers 77 122 124 108 68 173 193 110 0.2 0.4 0.2 0.2

dividers 5395 8488 5495 5495 9072 13771 9732 9732 6 3 2 6

complex 6551 4166 4223 4223 11571 14854 17732 17732 7 4 4 5

Geomean 1242 1538 1391 1354 1725 2698 2768 2488 4 4 2 5

Ratio 1 1.24 1.12 1.09 1 1.56 1.6 1.44 1 1.04 0.59 1.43

1

10

100

1000

0 100 200 300 400 500 600 700 800 900 1000

R
u

n
ti

m
e

(s
)

Number of Instructions

Zhang
Zhang (incremental SDC)

Backtracking
Backtracking (incremental SDC)

Commercial

Fig. 5. Runtime Characterization For Loop Pipelining Scheduling Algorithms

2

4

6

8

10

12

0 100 200 300 400 500 600 700 800 900 1000

II

Number of Instructions

Zhang
Commercial

Backtracking

Fig. 6. Initiation Interval for Loop Pipelining Scheduled in Fig. 5

1 minute even for 1000 instructions. Although backtracking
runtime compares poorly to the commercial tool, Zhang’s
greedy approach is actually no better, because if we fail to
schedule for a given II we must iteratively increment the
candidate II and attempt to reschedule again. This iterative
process can be costly in terms of runtime as seen in Fig. 5.
Fig. 6 provides the final pipeline II achieved in each case. We
observe that the greedy algorithms, both the commercial tool
and Zhang, achieve inconsistent pipeline initation intervals due
to the resource constraints and cross-iteration dependencies.

VII. CONCLUSIONS

To summarize, resource constraints and loop recurrences
can have a considerable impact on greedy modulo scheduling

in HLS by increasing the initiation interval of synthesized
pipelines. This paper proposes a backtracking SDC-based mod-
ulo scheduling algorithm and a graph restructuring technique
for expression height reduction to reduce loop recurrence
lengths. Our empirical study on a set of benchmarks contain-
ing loop pipelines constrained by resources and limited by
recurrences show our approach achieves a 32% improvement
in geomean wall-clock versus prior work and 29% versus a
commercial tool.

REFERENCES

[1] J. Cong and Z. Zhang, “An efficient and versatile scheduling algorithm
based on SDC formulation,” in ACM/IEEE DAC, 2006, pp. 433–438.

[2] Z. Zhang and B. Liu, “SDC-based modulo scheduling for pipeline
synthesis,” in ICCAD, San Jose, CA, 2013.

[3] C.-T. Hwang, J.-H. Lee, and Y.-C. Hsu, “A formal approach to the
scheduling problem in high level synthesis,” IEEE TCAD, 1991.

[4] P. Paulin and J. Knight, “Force-directed scheduling for the behavioral
synthesis of ASICs,” CAD of Integrated Circuits and Systems, vol. 8,
no. 6, pp. 661–679, 1989.

[5] D. Gajski and et al. Editors, High-Level Synthesis - Introduction to Chip
and System Design. Kulwer Academic Publishers, 1992.

[6] C. McNairy and D. Soltis, “Itanium 2 processor microarchitecture,”
Micro, IEEE, vol. 23, no. 2, pp. 44–55, 2003.

[7] B. Ramakrishna Rau, “Iterative modulo scheduling,” Int’l Journal of
Parallel Processing, vol. 24, no. 1, Feb 1996.

[8] R. Schreiber, S. Aditya, S. Mahlke, V. Kathail, B. R. Rau, D. Cron-
quist, and M. Sivaraman, “PICO-NPA: High-level synthesis of nonpro-
grammable hardware accelerators,” Journal of VLSI signal proc. sys.
for signal, image and video tech., vol. 31, no. 2, pp. 127–142, 2002.

[9] C-to-Verilog, http://www.c-to-verilog.com.

[10] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, J. Anderson,
S. Brown, and T. Czajkowski, “LegUp: high-level synthesis for FPGA-
based processor/accelerator systems,” in ACM/SIGDA Int’l Symp. on
FPGAs, 2011.

[11] M. Sivaraman and S. Aditya, “Cycle-time aware architecture synthesis
of custom hardware accelerators,” ser. CASES ’02, 2002, pp. 35–42.

[12] J. Llosa, E. Ayguadé, A. Gonzalez, M. Valero, and J. Eckhardt,
“Lifetime-sensitive modulo scheduling in a production environment,”
Computers, IEEE Transactions on, vol. 50, no. 3, pp. 234–249, 2001.

[13] A. Nicolau and R. Potasmann, “Incremental tree height reduction for
high level synthesis,” in DAC, 1991.

[14] M. S. Schlansker and V. Kathail, “Acceleration of first and higher order
recurrences on processors with ILP,” in Work. on Lang. & Comp. for
Par. Comp., 1994.

[15] Z. Iqbal, M. Potkonjak, S. Dey, and A. Parker, “Critical path minimiza-
tion using retiming and algebraic speed-up,” in DAC, 1993.

[16] G. Ramalingam, J. Song, L. Joskowicz, and R. E. Miller, “Solving
systems of difference constraints incrementally,” Algorithmica, 1999.

[17] K. A. Hawick and H. A. James, “Enumerating circuits and loops in
graphs with self-arcs and multiple-arcs.” in FCS, 2008, pp. 14–20.

[18] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong
program analysis & transformation,” in IEEE CGO, 2004, pp. 75–86.

[19] Stratix-IV Data Sheet, Altera, Corp., 2010.

[20] DE4 Dev. and Education Board, Altera, Corp., 2010.

[21] J. E. Fritts, F. W. Steiling, and J. A. Tucek, “Mediabench II video:
Expediting the next generation of video systems research,” in Electronic
Imaging 2005. Int’l Society for Optics and Photonics.

[22] Y. Hara, H. Tomiyama, S. Honda, and H. Takada, “Proposal and quan-
titative analysis of the CHStone benchmark program suite for practical
C-based high-level synthesis,” Journal of Information Processing, 2009.

[23] S. A. Mahlke, D. C. Lin, and e. Chen, “Effective compiler support
for predicated execution using the hyperblock,” in ACM SIGMICRO,
vol. 23, no. 1-2. IEEE Computer Society Press, 1992, pp. 45–54.

[24] “lp solve LP solver,” http://lpsolve.sourceforge.net/5.5/, 2014.


