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ABSTRACT
Resource sharing is a key area-reduction approach in high-
level synthesis (HLS) in which a single hardware functional
unit is used to implement multiple operations in the high-
level circuit specification. We show that the utility of shar-
ing depends on the underlying FPGA logic element archi-
tecture and that different sharing trade-offs exist when 4-
LUTs vs. 6-LUTs are used. We further show that certain
multi-operator patterns occur multiple times in programs,
creating additional opportunities for sharing larger compos-
ite functional units comprised of patterns of interconnected
operators. A sharing cost/benefit analysis is used to in-
form decisions made in the binding phase of an HLS tool,
whose RTL output is targeted to Altera commercial FPGA
families: Stratix IV (dual-output 6-LUTs) and Cyclone II
(4-LUTs).

Categories and Subject Descriptors
B.7 [Integrated Circuits]: Design Aids

Keywords
Field-programmable gate arrays, FPGAs, high-level synthe-
sis, resource sharing

1. INTRODUCTION
High-level synthesis (HLS) refers to the automatic compi-

lation of a program specified in a high-level language (such
as C) into a hardware circuit. There are several traditional
steps in HLS. Allocation determines the number and types of
functional units to be used in the hardware implementation.
This is followed by scheduling, which assigns operations in
the program specification to specific clock cycles and gen-
erates a corresponding finite state machine (FSM). Binding
then assigns the operations in the program to specific func-
tional units in a manner consistent with the allocation and
scheduling results.

A well-studied area-reduction optimization in the binding
step is called resource sharing, which involves assigning mul-
tiple operations to the same hardware unit. Consider, for
example, two additions that are scheduled to execute in dif-
ferent clock cycles. Such additions may be implemented by
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the same adder in hardware – the additions share the hard-
ware adder. Resource sharing is accomplished by adding
multiplexers (MUXes) to the inputs of the shared functional
unit, with the FSM controlling the MUXes to steer the cor-
rect data to the adder based on the state. Since MUXes are
costly to implement in FPGAs, resource sharing has gener-
ally been thought to have little value for FPGAs, except in
cases where the resource being shared is large or is scarce in
the target device.

In this paper, we examine the impact of the FPGA logic
element architecture on the effectiveness of resource shar-
ing. We conduct our analysis using two commercial Altera
FPGA families: 1) Cyclone II [2] (4-LUTs) and 2) Stratix
IV [3] (dual-output 6-LUTs). One of the contributions of
this paper is to show conclusively the cases for which re-
source sharing is advantageous for FPGAs. Results show
that certain operators (e.g. addition) that are not worth
sharing in Cyclone II are indeed worth sharing in Stratix
IV. This is due to the larger LUT size, which permits por-
tions of the sharing multiplexer circuitry to be combined
into the same LUTs that implement the operators them-
selves. We then show that there exist patterns of operators
that occur commonly in circuits and that such patterns can
be considered as composite operators that can be shared to
provide area reductions. We use the sharing analysis re-
sults to drive decisions made in the binding phase of the
LegUp open source HLS tool [13] built within the LLVM
compiler [11].

2. BACKGROUND AND RELATED WORK
Recent research on resource sharing that specifically tar-

gets FPGAs includes [9, 8, 5, 14, 4]. The work of Cong
and Jiang [6] bears the most similarity to our own in that
it applied graph-based techniques to identify commonly oc-
curring patterns of operators in the HLS of FPGA circuits,
and then shared such patterns in binding for resource re-
duction. Some of the area savings achieved, however, were
through the sharing of multipliers implemented using LUTs
instead of using hard IP blocks. Implementing multipliers
using LUTs is very costly, and thus offers substantial sharing
opportunities.

The two commercial FPGAs targeted in this study have
considerably different logic element architectures. In Cy-
clone II, combinational logic functions are implemented us-
ing 4-input LUTs. Stratix IV logic elements are referred
to as adaptive logic modules (ALMs). An ALM contains
a dual-output 6-LUT, which receives 8 inputs. Each of the
outputs corresponds to an adaptive LUT (ALUT). The ALM
can implement any single logic function of 6 variables, or al-
ternately, can be fractured to implement two separate logic
functions (using both outputs) – i.e. two ALUTs. The ALM
can implement two functions of 4 variables, two functions
with 5 and 3 variables, respectively, as well as several other
combinations. In both architectures, a bypassable flip-flop
is present for each LUT output.
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Figure 1: Illustration of sharing.

Table 1: Area data for individual 32-bit operators
in the unshareable and shareable scenarios (ratios
represent shareable/unshareable).

Cyclone II Stratix IV
Unshareable Shareable Unshareable Shareable

LEs LEs ALMs ALMs
Add/Sub 32 96 (3.00) 16 25 (1.56)

Bitwise 32 64 (2.00) 32 32 (1.00)
Compare 32 96 (3.00) 24 46 (1.92)

Div 1118 1182 (1.06) 568 599 (1.05)
Mod 1119 1183 (1.06) 581 613 (1.06)
Mult 689 747 (1.08) 221 362 (1.64)
Shift 173 215 (1.24) 75 94 (1.25)

3. SHARING INDIVIDUAL OPERATORS
We first investigate the value of sharing individual oper-

ators outside the context of a larger circuit. For each type
of operator, we wish to know whether any area savings may
arise from sharing its hardware implementation vs. the case
of instantiating additional instances of the operator. An ex-
ample of resource sharing is illustrated in Fig. 1 for two C
statements: A = B + C and D = E + F. Fig. 1(a) shows an
implementation without sharing, using two adders; Fig. 1(b)
depicts the shareable case, in which the same two adders are
now implemented using the same functional unit. We wish
to compare the area consumed by both possible implemen-
tations, shareable vs. unshareable, for various types of op-
erators. The utility of sharing clearly depends on how the
multiplexers are implemented.

We created two different Verilog implementations for each
operator type in the LLVM intermediate representation (IR).
The first implementation contains a single instance of the
operator. The second contains the operator instance with 2-
to-1 multiplexers on its inputs. We implemented these two
subcircuits in FPGAs to measure their area. The subcircuits
were synthesized using Quartus II ver. 11.0. To measure
area, we use logic element count (LE) for Cyclone II and the
number of adaptive logic modules (ALMs) for Stratix IV. We
use the Quartus II INI variable fit_pack_for_density_light
to direct the tool to minimize circuit area when packing logic
into ALMs/LEs and LABs [1].

Table 1 provides area results for sharing individual 32-bit-
wide operators in Cyclone II and Stratix IV FPGAs. Each
row of the table corresponds to an operator type. The row
labeled bitwise represents the AND, OR, and XOR operators,
all of which consume the same area. The left side of the ta-
ble gives results for Cyclone II; the right side gives results for
Stratix IV. Area is shown for both the unshareable (columns
labeled unshareable) and shareable scenarios (columns la-
beled shareable). For the data corresponding to shareable
operators, values in parentheses give the ratio in area vs. the
unshareable case. Sharing provides a benefit when the ra-
tio reported is less than 2; that is, less area is consumed by
sharing the operator in hardware than by instantiating two
instances of the operator.

Table 1 illustrates that in both FPGA architectures, shar-
ing is useful (from the area-reduction perspective) for mod-

ulus, division, multiplication (implemented with LUTs) and
bitwise shift. Modulus and division are implemented with
LUTs in both architectures and consume considerable area
in comparison with multiplexers. The shift represents a bar-
rel shift. In Stratix IV, sharing is also beneficial for addition,
subtraction, comparison, as well as all of the bitwise oper-
ations: AND, OR, XOR. The larger LUTs in Stratix IV allow
some (or all) of the sharing MUXes to be combined into
the same LUTs that implement the operators, and thus, for
Stratix IV, sharing is useful for a broader set of operators.

Regarding the bitwise operator data for Stratix IV in Ta-
ble 1, in the unshareable case, a 32-bit bitwise logical op-
erator uses 32 ALMs; in the shareable case, 32 ALMs are
also consumed. In the unshareable case, however, each out-
put is a function of just 2 primary inputs. Since ALMs are
dual-output and can implement any two functions of up to
4 inputs, the unshareable case should have consumed just
16 ALMs. Quartus did not produce an area-minimal imple-
mentation for this case.

4. SHARING COMPOSITE OPERATORS
We now consider composite operators (patterns), which

are groups of individual operators that connect to one an-
other in specific ways. We begin by defining the key concepts
used in our pattern analysis algorithm:

Pattern graph: A directed dataflow graph representing
a computational pattern. Each node in the graph is a two-
operand operation from the LLVM IR. Each pattern graph
has a single root (output) node. The number of nodes in a
pattern graph is referred to as its size. We require the nodes
in a pattern graph to reside in the same basic block, where a
basic block is a contiguous set of instructions with a single
entry point and a single exit point.

PatternMap: A container for pattern graphs that or-
ganizes pattern graphs based on size and functionality. A
key operation performed by the PatternMap is the testing
of two patterns for equivalence. The equivalence checking
accounts for patterns which are functionally but not topo-
logically equivalent due to the order of operands in commu-
tative operations. Note that pattern graphs with different
schedules are not considered functionality equivalent. That
is, the corresponding nodes in two equivalent pattern graphs
must have corresponding cycle assignments in the schedule
(e.g. if two operators are chained together in a single cycle
in one pattern graph, the corresponding operators must be
chained in the equivalent pattern graph). HLS scheduling
results are used to detect such cases.

Finally, note that two pattern graphs may contain the
same set of operators connected in the same way, yet corre-
sponding operators in the graphs have different bit widths.
It is undesirable to consider the two pattern graphs as equiv-
alent if there is a large “gap” in their operator bit widths.
For example, it would not be advantageous to force an 8-bit
addition to be realized with a 32-bit adder in hardware. We
developed a simple bit width analysis pass within LLVM
that computes the required bit widths of operators. Two
pattern graphs are not considered as equivalent to one an-
other if their corresponding operators differ in bit width by
more than 10 (determined empirically). We also consider
operator bit widths in our binding phase, described below.

Valid operations for patterns: We do not allow all op-
erations to be included in pattern graphs. We exclude opera-
tors with constant inputs, as certain area-reducing synthesis
optimizations are already possible for such cases. In addi-
tion, we do not allow division and modulus to be included
in pattern graphs. The FPGA implementation of such oper-
ators is so large that, where possible, they should be left as
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Table 2: Area for sequential patterns of operators
in the unshareable and shareable scenarios (ratios
represent shareable/unshareable).

Cyclone II Stratix IV
Unshared Shareable Unshared Shareable

Pattern LEs LEs ALMs ALMs
Add Add Add Add 128 288 (2.25) 64 73 (1.14)

Add Sub 64 160 (2.50) 32 42 (1.31)
Add XOR 64 128 (2.00) 33 42 (1.27)

Add XOR Add 96 192 (2.00) 48 58 (1.21)
OR OR OR 96 128 (1.33) 64 51 (0.80)
XOR XOR 64 96 (1.50) 32 32 (1.00)

isolated operators and shared as much as possible (by wide
multipliexers on their inputs).

4.1 Pattern Discovery Approach
All pattern graphs up to a maximum size S are discov-

ered as follows: We iterate over all instructions in the pro-
gram. Once a valid instruction is found, this becomes the
root instruction, r, of a new pattern graph of size 1. We
then perform a breadth-first search of the predecessors of
r, adding all combinations of predecessors one at a time, to
discover all graphs rooted at r. Each new graph is added to
the PatternMap object and we stop once graph sizes exceed
S or all graphs have been discovered. We then continue to
the next instruction. In this work, we find all patterns up
to size 10.

4.2 Pattern Sharing Analysis
We applied the pattern discovery approach described above

to identify commonly occurring patterns in a suite of 13 C
benchmark programs – the 12 CHStone HLS benchmarks [10],
as well as dhrystone. Table 2 presents a sharing analysis for
6 patterns we found to be common. Each pattern listed oc-
curs multiple times in at least one of the benchmarks. Our
purpose here is not to exhaustively list all patterns that oc-
cur more than once in any benchmark; rather, our aim is
to provide an illustrative analysis for the most commonly
occurring patterns in these particular 13 benchmarks. The
left column lists the pattern names, where each name defines
the operators involved. For example, Add_Add_Add_Add is a
pattern with 4 addition operators connected serially.

We follow the same analysis approach as described in Sec-
tion 3. We created two Verilog modules for each pattern:
one representing the unshareable case, a second having 2-
to-1 MUXes on each input, representing the shareable case.
The left side of Table 2 gives results for Cyclone II; the
right side for Stratix IV. All operators in patterns are 32
bits wide. For the columns of the table representing area,
resource sharing provides a “win” if the ratio in parenthe-
ses is less than 2 (see Section 3). The results in Table 2
are for sequential patterns, with registers on edges between
operators.

For Cyclone II, we observe that sharing is beneficial in
2 of the 6 patterns (OR_OR_OR and XOR_XOR) from the area
perspective. For Stratix IV, sharing is beneficial for all 6
patterns. For one of the patterns, OR_OR_OR, the shareable
implementation consumed less area than the unshareable
implementation. We investigated this and found that Quar-
tus did not produce an area-minimal implementation for this
pattern in the unshareable scenario, which we attribute to
algorithmic noise. We also analyzed the impact of resource
sharing for combinational patterns (i.e. patterns without
registers on edges between operators) and found sharing to
be less beneficial, owing to the ability of Quartus II to col-
lapse chained operators together into LUTs, thereby reduc-
ing the opportunities for collapsing the sharing MUXes into
the same LUTs as the operators.

We conclude that it is quite challenging to predict up-front

when sharing will provide an area benefit, as it depends on
the specific technology mapping and packing decisions made
by Quartus, which appear to depend on the specific pattern
implemented. However, we observe two general trends: 1)
Sharing is more likely to be beneficial for composite oper-
ators that consume significant area, particularly when the
MUXes that facilitate sharing can be rolled into the same
LUTs as those implementing portions of the operator func-
tionality. 2) Sharing is more advantageous when registers
are present in patterns – registers prevent an efficient map-
ping of operators into LUTs, thereby leaving LUTs under-
utilized, with free inputs to accommodate MUX circuitry.

5. BINDING
For each pattern size (in descending order) we choose pairs

of functionally-equivalent pattern graphs to be implemented
by (bound to) a single shareable composite operator in the
hardware. Any two graphs whose operations happen in non-
overlapping clock cycles are candidates for sharing.

Consider two sharing candidates, patterns P1 and P2.
We compute a sharing cost for the pair by summing the bit
width differences in their corresponding operators:

SharingCost =
X

n1∈P1,n2∈P2

|width(n1) − width(n2)| (1)

where n1 and n2 are corresponding operators in pattern
graphs P1 and P2, respectively. The intuition behind (1)
is that it is desirable for operation widths between pattern
graphs sharing resources to be as closely aligned as possible.

However, two additional optimizations are possible that
provide further area reductions:

1. Variable Lifetime Analysis: Our binding approach
only pairs pattern graphs whose output values have non-
overlapping lifetimes. Otherwise, separate output registers
are required to store the values produced by each pattern.
If pattern graph output value lifetimes do not overlap, a sin-
gle register can be used. The LLVM compiler already has
a pass to determine a variable’s lifetime in terms of basic
blocks spanned. We combine the results of this pass with
the output of scheduling to determine the cycle-by-cycle life-
times of each variable.

2. Shared Input Variables: If two patterns share an
input variable, then adding a MUX on the input is unneces-
sary if the patterns are bound to the same hardware, saving
MUX area. Hence, our binding algorithm prefers to pair
patterns with shared input variables.

After computing the sharing cost using (1) for a pair of
candidate patterns (based on their operator bitwidths), we
adjust the computed cost to account for shared input vari-
ables between the patterns. Specifically, we count the num-
ber of shared input variables that feed into the two patterns
and reduce the sharing cost for each such shared input vari-
able (cost determined empirically).

Finally, we apply a greedy algorithm to bind pairs of pat-
tern graphs to shared hardware units. Sharing candidates
with the lowest cost are selected and bound to a single hard-
ware unit. Note that owing to the costs of implementing
MUXes in FPGAs, we allow a composite operator hardware
unit to be shared at most twice. Once we have exhausted
binding pattern graphs of a given size, we proceed to binding
pattern graphs of the next smaller size. The problem is that
of finding a minimum cost graph matching, and though we
found that a greedy approach suffices, more sophisticated
algorithms can be applied (e.g. [12]).

6. EXPERIMENTAL STUDY
We now present results for resource sharing in HLS bind-

ing for a set of 13 benchmark C programs – the 12 CHStone

113



Table 3: Area results for resource sharing using hard multipliers/DSP blocks.
Cyclone II Stratix IV

Sharing Sharing Div/Mod + Sharing Sharing Div/Mod +
Benchmark No Sharing Div/Mod Patterns No Sharing Div/Mod Patterns

adpcm 22541 21476 (0.95) 19049 (0.85) 8585 8064 (0.94) 7943 (0.93)
aes 18923 15418 (0.81) 15477 (0.82) 9582 8136 (0.85) 7929 (0.83)

blowfish 11571 11571 (1.00) 9306 (0.80) 6082 6082 (1.00) 5215 (0.86)
dfadd 7012 7012 (1.00) 6364 (0.91) 3327 3327 (1.00) 2966 (0.89)
dfdiv 15286 13267 (0.87) 13195 (0.86) 7043 5949 (0.84) 5915 (0.84)
dfmul 3903 3903 (1.00) 3797 (0.97) 1893 1893 (1.00) 1824 (0.96)
dfsin 27860 27982 (1.00) 26996 (0.97) 12630 11529 (0.91) 11094 (0.88)
gsm 10479 10479 (1.00) 10659 (1.02) 4914 4914 (1.00) 4537 (0.92)
jpeg 35792 34981 (0.98) 34316 (0.96) 17148 16703 (0.97) 16246 (0.95)
mips 3103 3103 (1.00) 2986 (0.96) 1610 1610 (1.00) 1493 (0.93)

motion 4049 4049 (1.00) 3897 (0.96) 1988 1988 (1.00) 1878 (0.94)
sha 11932 11932 (1.00) 12307 (1.03) 5909 5909 (1.00) 5856 (0.99)

dhrystone 5277 5277 (1.00) 5277 (1.00) 2598 2598 (1.00) 2598 (1.00)
Geomean: 10419.82 10093.65 9677.25 4980.59 4788.06 4558.11

Ratio: 1.00 0.97 0.93 1.00 0.96 0.92
Ratio: 1.00 0.96 1.00 0.95

Figure 2: Normalized area results with soft (LUT-
based) multipliers.

benchmarks, as well as dhrystone. For both target FPGA
families, we evaluated several sharing scenarios that succes-
sively represent greater amounts of resource sharing: 1) No
sharing; 2) sharing dividers and remainders (mod); 3) sce-
nario #2 + sharing multipliers; and 4) Scenarios #2 + #3
+ sharing composite operator patterns. The work in [6] im-
plemented multipliers with LUTs instead of hard IP blocks,
i.e. DSP blocks in Stratix IV and embedded multipliers in
Cyclone II. To permit comparison with [6], we implemented
the benchmarks in two ways: 1) with LUT-based multipli-
ers, and 2) using hard multipliers. Scenario #3 applies only
to the case of multipliers implemented with LUTs.

Table 3 gives area results for Cyclone II (left) and Stratix IV
(right) when multipliers are implemented using hard IP blocks.
Ratios in parentheses show the area reduction vs. the no
sharing case. Observe that sharing division/modulus alone
provides 3% and 4% average area reduction for Cyclone II
and Stratix IV, respectively. Sharing patterns provides an
additional 4% and 5% area reduction, on average, for Cy-
clone II and Stratix IV respectively.

Fig. 2 summarizes the average area results across all cir-
cuits for the case when multipliers are implemented with
LUTs. Larger area reductions are observed, as expected,
owing to the significant amount of area needed to realize
multipliers with LUTs. For Cyclone II, a 16% reduction in
LEs is observed when all forms of sharing are turned on (left
bars for each scenario); for Stratix IV, a 12% reduction in
ALMs is seen (right bars).

The pattern sharing approach introduced in this work pro-
vides a larger benefit in Stratix IV (4-5%) vs. Cyclone II (2-
4%), due to the ability to exploit ALM under-utilization by

combining MUX and operator functionality together into
LUTs. While speed performance results are omitted for
space reasons, we found that resource sharing reduced speed
by 11%, on average, in both Cyclone II and Stratix IV, when
all forms of sharing were turned on.

7. CONCLUSIONS AND FUTURE WORK
We investigated resource sharing for FPGAs and demon-

strated that different resource sharing tradeoffs exist de-
pending on the logic element architecture of the target FPGA.
On average, resource sharing provides area reductions of 7-
16% for Cyclone II, and 8-12% for Stratix IV, depending on
whether multipliers are implemented using hard IP blocks
or LUTs. Directions for future work include modifying the
scheduling phase of HLS to encourage the generation of com-
posite operator patterns with registers at specific points, in
order to allow MUXes to be more easily combined together
in LUTs with portions of the operator functionality.
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