Profiling-Driven Multi-Cycling in FPGA High-Level Synthesis

Stefan Hadjis', Andrew Canis', Ryoya Sobue?, Yuko Hara-Azumi?, Hiroyuki Tomiyama?, Jason Anderson'

1Dept. of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada
2Dept. of Electronic and Computer Engineering, Ritsumeikan University, Shiga, Japan
3Dept. of Communications and Compuer Engineering, Tokyo Institute of Technology, Tokyo, Japan
Email: legup@eecg.toronto.edu

Abstract—Multi-cycling is a well-known strategy to improve
performance in digital design, wherein the required time for se-
lected combinational paths is lengthened to multiple clock cycles
(rather than just one). The approach can be applied to paths as-
sociated with computations whose results are not needed immedi-
ately — such paths are allowed multiple clock cycles to “‘complete”,
reducing the opportunity for them to form the critical path of the
circuit. In this paper, we consider multi-cycling in the high-level
synthesis context (HLS) and use software profiling to guide multi-
cycling optimizations. Specifically, prior to HLS, we execute the
program in software with typical datasets to gather data on the
number of times each code segment executes. During HLS, we
then extend the schedule for infrequently executed code segments
and apply multi-cycling to the dilated schedules, which exhibit
greater opportunities for multi-cycling. In essence, our approach
ensures that non-frequently executed code segments will not form
the critical path of the HLS-generated circuit. In an experimen-
tal study targeting the Altera Stratix IV FPGA, we evaluate the
impact on speed performance and area for both traditional multi-
cycling, as well as the proposed software profiling-driven multi-
cycling, and show that profiling-driven multi-cycling leads to an
average speedup of over 10% across 13 benchmark circuits, with
some circuit speedups in excess of 30%. Circuit area is reduced by
11%, yielding a mean 20% improvement in area-delay product.

I. INTRODUCTION

High-level synthesis (HLS) methodologies automatically
synthesize a hardware circuit from a software program, easing
the burden of hardware design by allowing software method-
ologies to be used. HLS is gaining popularity as a method-
ology for field-programmable gate arrays (FPGAs) and com-
mercial HLS tools are available from both of the main ven-
dors [1, 2]. The strategy of the vendors with respect to HLS
is to: 1) make their technology easier to use for hardware en-
gineers, and 2) ultimately facilitate the use of FPGAs by soft-
ware engineers to implement compute accelerators. There is
a quality gap, however, between HLS-generated hardware and
human-crafted hardware — the auto-generated hardware may
be slower and consume more area and power than a manually
designed circuit, especially for applications where there ex-
ists a specific spatial layout that delivers high performance. In
this paper, we aim to boost the speed of HLS circuits through
multi-cycling of combinational paths.

In traditional sequential circuit design, combinational path
delays may not exceed the clock period. Multi-cycling is a
well-known optimization technique, where selected combina-
tional paths are permitted to have longer delays than the clock
period, P, specifically, path delays as long as n x P, where

n is an integer greater than 1. Such relaxed constraints are
possible for paths whose computed signal values are not re-
quired/used in the immediately subsequent clock cycle(s), and
whose inputs can be held steady in registers for n cycles. Com-
binational paths with such relaxed constraints are said to be
multi-cycle paths. As an example, consider a circuit with a
longest path delay of 10ns, and a second-longest path delay of
8ns. Without multi-cycling, the circuit’s minimum clock pe-
riod is 10ns (100MHz). However, if the worst-case path can
be multi-cycled and permitted 2 cycles to “complete”, then the
circuit’s minimum clock period is reduced to 8ns (125MHz),
as two clock cycles (16ms total) is long enough to accommo-
date the original 10ns worst-case path.

HLS is a particularly opportune stage of the flow to both
discover and create multi-cycling opportunities, as a key re-
sponsibility of HLS algorithms is to determine which compu-
tations to schedule in certain clock cycles, defining a finite-
state machine (FSM). This means that, within HLS, one has
complete visibility regarding the paths whose computed data
is not needed in the subsequent cycle, and may therefore be
multi-cycled. Conversely, consider a circuit described at the
RTL or gate level, wherein it is difficult to automatically infer
the paths that may be multi-cycled. In addition to HLS eas-
ing the discovery of multi-cycle paths, one can alter the HLS
scheduling algorithms to deliberately create new multi-cycling
opportunities — an approach we apply in this work.

While prior work has considered multi-cycling in HLS
(e.g. [3]), a novel contribution of this work is software-
profiling-driven scheduling for multi-cycling. The key con-
cept is, before HLS commences, to profile the program-to-be-
synthesized in software under a typical input dataset, gathering
data about the number of times each program segment (ba-
sic block) executes. Then, during HLS scheduling, we dilate
the hardware schedules corresponding to infrequently executed
program segments. Lengthening their schedules has no appre-
ciable impact on the overall circuit latency, due to their infre-
quent execution. However, the elongated schedules of such
segments permit greater amounts of multi-cycling, assuring
their associated hardware will not be on the critical path of
the HLS-generated circuit. In an experimental study target-
ing the Altera Stratix IV FPGA [4], we show that the proposed
methodology reduces circuit area-delay product by 20% on av-
erage and can provide circuit speedups in excess of 30%.

II. BACKGROUND

Recent HLS research has shown that significant circuit
speedups are possible using multi-cycle paths compared to
fully pipelined paths [3]. For example, eliminating registers

Cycle slack
of 2

Fig. 1. A multi-cycle path. The multiplier can complete in two clock cycles
and therefore has a multi-cycle slack of 2.

both saves area and removes several components of register-
to-register delay, namely, clock-to-Q delay, setup time, clock
skew. Multi-cycling also allows synthesis tools to optimize
logic across what were previously register boundaries.

[3] takes advantage of these benefits by exploring circuit
de-pipelining, replacing pipelined computations with multi-
cycled computations. They develop an efficient algorithm to
discover and constrain all multi-cycle paths in a circuit, while
considering every reachable circuit state. However, [3] does
not report the speedup offered by multi-cycling in isolation;
rather, it presents results for multi-cycling combined with bit-
level optimizations and control-flow graph restructuring.

More recently, [10] observed circuit speedups with an itera-
tive HLS flow that uses place and route delay estimates. Multi-
cycling was not the focus of that work however, with only sim-
ple constraints generated that resulted in marginal speedups.

Our contribution is to go beyond static circuit analysis for
finding multi-cycling opportunities by using software profil-
ing to guide schedule changes in HLS that create new multi-
cycling opportunities. To our knowledge this has not been
considered by prior work, and can be combined with other ap-
proaches such as [10] to leverage multi-cycling by exploiting
visibility both into the delays of an HLS circuit as well as in-
frequently exercised computational paths.

III. STATIC MULTI-CYCLE PATH ANALYSIS

Multi-cycle paths occur frequently in HLS-generated cir-
cuits when an operation completes more than one cycle be-
fore its result is consumed — we refer to such a path as having
multi-cycle slack. A naturally occurring multi-cycle path is
illustrated in Fig. 1, in which the multiplication E*F, not re-
quired until clock cycle 3, is allowed two cycles to complete.

Our work is implemented in the LegUp open-source HLS
tool developed at the University of Toronto [5], which is im-
plemented within the LLVM compiler framework [6]. Within
LLVM, the program is represented in an intermediate represen-
tation (IR), resembling assembly code. LegUp performs the
traditional HLS steps on the IR: allocation, scheduling, bind-
ing, and HDL generation. Two compiler-related concepts are
necessary to understand the proposed multi-cycling approach:
1) a basic block is a straight-line segment of code with a sin-
gle entry point (at the beginning) and a single exit point (at
the end); and 2) a PHI instruction is a control-flow related in-
struction within the LLVM IR that essentially implements a
multiplexer selecting one of several values, depending which
basic block executed prior to the block containing the PHI. For
example, consider a basic block C, which may be reached by

either of basic blocks A or B. A PHI allows a value in C to be
set according to whether control transferred from A or from B.

After scheduling in HLS, analysis of the LegUp schedule
is automatically performed to identify all instances of multi-
cycle slack and print constraints for Altera’s Quartus II Timing
Analyzer, indicating to the timing analyzer that the paths are
permitted extra cycles. This is done by traversing all register-
to-register paths post-scheduling, including paths scheduled
across basic blocks, and calculating cycle delays.

In addition to analyzing naturally occurring multi-cycle
paths, datapath de-pipelining is performed to create additional
multi-cycle opportunities. In general, hardware generated by
LegUp is pipelined and able to process new data each clock
cycle, including loops, dividers and floating point operations.
However, instruction-level parallelism inferred from the C
source does not always permit an initiation interval of 1 for
these pipelines. While circuits can accept new data each clock
cycle, this is not always observed in C benchmarks, which de-
scribe algorithms sequentially and are at times translated into
hardware where only one or a few hardware units are active at
a time. Because datapaths do not always benefit from pipeline
parallelism, an alternative is to fully de-pipeline datapaths and
instead designate them as multi-cycle paths (of equivalent la-
tency). In such cases, the data feeding these multi-cycle paths
is held in registers for multiple clock cycles.

A. De-pipelining Algorithm

The first step in de-pipelining is to identify where regis-
ters should remain, either to maintain functional correctness
or where fully combinational logic would lead to unacceptable
speed degradations. These cases are summarized here:

1. Block RAMs: Block RAMs in FPGAs are never combi-
national; rather, they always have registers at the inputs
(and optional registers at the outputs). Load operations
are therefore multi-cycle path sources, while store opera-
tions are multi-cycle path destinations. In addition, loads
act as multi-cycle destinations when the load address cal-
culation completes in multiple clock cycles, terminating
at the address input port.

2. FSM state registers: We cannot eliminate the FSM state
registers. However, next-state logic driving the FSM state
registers is permitted to operate across multiple clock cy-
cles and benefit from de-pipelining. Such next-state com-
putations correspond to branch-related computations in
the software, and these next-state computations can be
multi-cycled when there exists cycle slack between the
computation of a value and the clock cycle when it is used
within a branching condition.

3. Function calls: LegUp creates separate Verilog modules
for each C function. The module inputs (function ar-
guments) and the module output (function return value)
are registered, meaning that call operations act as both
sources or destinations for multi-cycle paths.

4. Basic block boundaries: Multi-cycle paths may span ba-
sic block boundaries, in that a path starting in one basic
block may terminate in another basic block. However,
registers are still included for PHI operations and for com-
putations whose results are consumed (used) in a different

basic block. Motivation for this decision is discussed at
the end of this section.

5. Pipelined/shared hardware: For multi-cycling to work
correctly, the data at the input of the multi-cycled path
must be held in registers for the duration of the path
— multiple clock cycles. Shared hardware that re-
ceives/produces new data every cycle cannot be part of
a multi-cycle path. An example of this relates to mem-
ory: while LegUp supports local RAMs for data local
to a function, globally accessible data is stored in shared
memory. Shared memory uses dual-port RAMs, which
implies at most two memory operations per clock cycle.
It is common for new data to be read each clock cy-
cle, which does not permit global RAMs to directly drive
multi-cycle paths. This problem is solved by storing each
loaded value feeding multi-cycle paths in a unique regis-
ter, as discussed in Section V.

These five comprise all cases of multi-cycle path sources and
destinations, and we refer to these as path separators. Sepa-
rators correspond to nodes in the program’s control-dataflow
graph (CDFG), as represented by the LLVM IR. Path separa-
tors form the start/end points of multi-cycle paths.

After HLS scheduling, the location of each of the path sep-
arators is stored, and a traversal is performed over the control-
dataflow graph (CDFG) representing the circuit to identify
each separator-to-separator pair, print the appropriate multi-
cycle timing constraint, and remove all intermediate, unneeded
registers. The traversal is implemented as a series of back-
wards depth-first searches, each starting at a separator and
traversing backwards to find all separators preceding it. Pseu-
docode is shown in Algorithm 1: For each separator .S, fix this
separator as a multi-cycle destination. Then, traverse back-
wards along all paths rooted at .S until another separator is
reached along each path. The first separator found along each
path is the multi-cycle path source, while S is the multi-cycle
path destination.

1 for each separator S do
2 Current = S
3 for all drivers D of Current in CDFG do
4 if D is a separator then
5 ‘ Store the path from D—S
6 else
7 Remove any register between D and Current
8 Repeat steps 3-8 for Current = D (recursion)
9 end
10 end
11 end
Algorithm 1: Identifying all multi-cycle paths.

Following the traversal, all multi-cycle paths have been
stored (step 5 in Algorithm 1) and we print constraints for Al-
tera’s Quartus II Timing Analyzer, indicating to the timing an-
alyzer that the paths are permitted extra cycles. By default,
Synopsys multi-cycle timing constraints are of the following
form (shown here for setup time) [7]

set_multicycle_path -from [get_registers {
source_separator }] -to

[get_registers { dest_separator

}1 —-setup <slack #>

Basic Block 1
%a = %b + %c

\

Basic Block 3

Clocked in FSM
State A

Basic Block 2

6 Cycles 3 Cycles

%d = %a + %e

%f = %a + %g
Clocked in FSM Basic Block 4
State B b ={%d or %f}

Fig. 2. Multi-cycle paths across basic blocks can have unbalanced latencies
despite starting and terminating at the same registers.

Two such constraints are printed for each separator-to-
separator pair, one for setup and one for hold. For a path with
multi-cycle slack of n (n > 2), its setup slack is specified as n
and its hold slack as n — 1 (which instructs the timing analyzer
to take the nth edge as the capturing edge and move the hold
check back to the launch edge [11]). Because scheduling in-
formation is available for each operation, it is known exactly in
which FSM state every register is enabled (registers use clock
enable circuitry and a given register is only enabled in certain
FSM states). The multi-cycle slack for a path is thus calculated
as the number of FSM states between the source and destina-
tion separators being clocked (enabled). An area of caution is
that multi-cycle paths may cross basic blocks. This compli-
cates slack calculation because paths contain branches, which
can lead to unbalanced path latencies.

For example, consider the circuit with two multi-cycle paths
shown in Fig. 2. The operation %a is calculated in basic block
1, and then used in both basic blocks 2 and 3. Because %a is
used in a basic block other than the basic block where it was
defined, the result of operation %a is stored in a register (indi-
cated in bold blue), during FSM state A. This registered value
is then used in additional computations, for example compu-
tation %d in basic block 2 and computation %f in basic block
3, depending on the branch outcome from basic block 1. Fi-
nally, both computations %d and %f are used in basic block
4, requiring a PHI operation (multiplexer) at the input of basic
block 4. The result of this PHI is then also stored in a register,
during FSM state B, resulting in two multi-cycle paths in this
circuit: both paths begin at register %a and terminate at the
PHI register, with one path through basic block 2 and the other
through basic block 3.

The goal is to calculate the multi-cycle slacks for these two
paths, i.e. the number of FSM states between states A and B.
Because the intermediate basic blocks have different latencies,
the state difference depends on the branch taken: if the branch
through basic block 2 is taken, then the FSM will reach state B
six states (cycles) after A. If the branch through basic block 3
is taken, the FSM will reach state B three states after A. Thus,
the two multi-cycle paths have unbalanced latencies of six and
three, despite sharing source and destination separators.

Such scenarios of unbalanced latencies are common and
cannot be addressed by the timing constraints outlined above.
If a single multi-cycle slack constraint is printed for every
separator-to-separator pair, then when that pair has multiple
paths with unbalanced latencies the shortest latency of all these

paths must be selected to prevent timing violations (indeed,
setup violations were observed during timing simulation when
the minimum slack is not used). This makes higher-latency
paths between these two registers critical in the overall circuit.
One solution is to restrict paths across basic blocks — if
multi-cycle paths cannot span basic blocks, then unbalanced
latencies are not a problem. However, we observed that the
greatest speedups attained through multi-cycling are due to
cycle-slack analysis across basic blocks. The other extreme
is not allowing any registers between basic blocks (for exam-
ple, not even with PHI operations), however this would lead
to an exponential number of such unbalanced paths, as the
depths of the multi-cycle paths increase. Another solution is
in between these extremes, in which pipeline registers are ju-
diciously added back into the circuit to "break up" such con-
flicting paths. A more obvious solution we investigated was to
apply —through constraints on these paths. Multi-cycle tim-
ing constraints may specify a set of nodes through which the
path must pass in order for the constraint to be applied:
set_multicycle_path -from [get_registers {
source_separator }] -to [get_registers { dest_separator
}] -setup <slack #> -through [get_nets { net_1 net_2 }]
This seems like a perfect solution, as it allows separate
slacks to be applied for each signal. Unfortunately, the later
synthesis and technology mapping steps may optimize away
such intermediate signals. For example, such an intermedi-
ate signal may be “covered” within a LUT in the technology
mapping, and therefore made invisible to static timing anal-
ysis tools. Because we cannot rely on the synthesis tool to
keep the particular signal names, one option is to add Al-
tera’s synthesis keep attribute to all intermediate sig-
nals. While directives can be added to preserve intermediate
wires, this introduces additional delays and increases circuit
area. This is discussed further in Section V.

IV. PROFILING-DRIVEN MULTI-CYCLING

Extending the latency of a multi-cycle path requires modi-
fying the control logic (FSM) that manages when the values
computed by the path are consumed. This can be very useful
in manual circuit design, wherein the latency (in cycles) of a
critical path can be increased slightly, leading to a small in-
crease in overall circuit latency, but ensuring that the path is no
longer critical. We devised a method to achieve the same result
in HLS, using software profiling.

Profilers, such as 11vm-prof (built into the LLVM com-
piler [6]) indicate which parts of a circuit (program) will be
used less frequently. Consider the example software program
in Fig. 3(a). This program has a conditional branch, which
either executes basic block B or C. Software profiling reveals
that on a standard execution of this program with a typical in-
put dataset, branch B is taken 3% of the time, while branch
C is taken 97% of the time. Once this software program is
converted to hardware by HLS (Fig. 3(b)), the software profil-
ing data indicates that computations performed by the circuitry
corresponding to B will only be used by sub-circuit D ~3% of
the time. If additional latency is then added to sub-circuit B, it
will have only a minor impact on the overall circuit’s total exe-
cution cycles. However, extending the latency of computations
(i.e. the schedule) in sub-circuit B ensures that the critical path
of the overall circuit is not within B.

A

97% of
time A ¢

NS / 0

/

Increased path latency in part B of
the circuit is minor

(b) Hardware

3% of
time

(a) Software

Fig. 3. An illustration of software profiling, in which branch B executes
infrequently and therefore comprises a small percentage of total execution
cycles in this circuit.

Extending the latency of infrequently executed ba-
sic blocks is achieved by specifying a cutoff frequency,
FREQ_THRESHOLD, and identifying all basic blocks whose
execution frequency is less than this threshold. The execution
frequency of a basic block is reported by the LLVM profiler,
and is defined as a percentage: the number of executions of a
specific basic block divided by the total number of executions
of all basic blocks For example, if a software run executes 100
basic blocks in total (dynamically), then a basic block which
executed five times has a frequency of 5%. The latency of all
paths in these basic blocks is then extended by a fixed amount,
e.g. 1 clock cycle.

The distribution of basic blocks by execution frequency
for one CHStone benchmark circuit [8], dfmul, is shown in
Fig. 4a. The impact of software profiling with various cutoff
frequencies applied to dfmul is shown in Fig. 4b. As the cut-
off frequency increases, more and more basic blocks fall be-
low this threshold and more multi-cycle paths become dilated.
This increases both clock frequency and overall latency (# of
clock cycles to complete). The key is identifying when the
F Max gains exceed the latency gains by the greatest amount,
as shown in Section V.

The scheduling algorithm in LegUp is based on the system-
of-difference (SDC) formulation, which formulates scheduling
mathematically as a linear program (LP) [9] that can be han-
dled by a standard solver. In the SDC scheduling formulation,
variables are introduced for each computation in the CDFG
and correspond to the state number in which the computation
will execute. LP constraints are introduced to enforce depen-
dencies between computations (i.e. ensure that dependent op-
erations are scheduled later than their dependencies), as well
as to enforce clock period and resource constraints.

A modification to the linear program allows the scheduled
state of any operation to be extended arbitrarily, by constrain-
ing an operation to be scheduled a number of cycles later
than its original cycle number assignment (in an initial ASAP
scheduling). If this is done for an operation which is a multi-
cycle path destination, then the latency of the entire path has
been extended. For example, if a store operation is currently
constrained to have state > 4 within its basic block, then
the latency of a multi-cycle path terminated at this store can be
extended by one cycle by applying the constraint state >

16

14 +
2 12 4
3
= 10
2
2 8
@
5 6
3 4
£
s 2
z

O i

0% 0-1% 1-2% 2-3% 3-6% 6-9% 9-12% 12-15% >15%
Basic Block Execution %
(a)
. 135
£
] 13
S
< A~
= 1.25 P ,——/
S 1 -——— P === Fmax
g [/
s 1
g 1.15 1' / e Cy/ClES
¢ 11 |y
L [] 7
® 105 H
« ’
1
0 3 6 9 12 15
Cutoff Frequency (%)

(b)

Fig. 4. (a) The distribution of basic blocks by frequency is shown here for the
dfmul benchmark. In nearly all benchmarks, the majority of basic blocks
fall below the 3% execution threshold. (b) The impact on F'M ax and clock
cycle latency when profiling-driven multi-cycling is applied to dfmul with
varying cutoff frequencies.

5. This is summarized in Algorithm 2. Note that the combined
run-time of algorithms 1 and 2 is a few seconds for all circuits.
The (path separator) operations in infrequently executed ba-
sic blocks which are pushed to later cycles include store oper-
ations, function calls, and operations used across basic blocks.
In addition, whenever a basic block contains an operation
whose state has been delayed, the basic block also has its total
latency extended by the same amount. This is done by delay-
ing branch and return instructions, which terminate these basic
blocks. Note that line 8 of Algorithm 2 specifies a > rather
than an equality because sometimes an equality constraint is
not possible, for example if a resource-constrained operation
(such as a memory operation) is pushed to a state which al-
ready contains the maximum number of such operations.

We experimented with the algorithm parameters and ob-
served that while a cutoff frequency in excess of 5% provided
large increases in F"Max, the increased latency became too
high to justify the clock frequency speedups. Additionally,
we tried dilating paths as a function of their basic block fre-
quency, for example extending paths in basic blocks of fre-
quency 1% by 2 cycles and paths in basic blocks of frequency
2-3% by 1 cycle. However, the extra latency rarely provided
additional F'Maz and the best results were obtained by ex-
tending paths by 1 cycle with a frequency cutoff of 1-3%,
i.e. with calculate_delayed_state just incrementing
the current state of S by 1.

V. EXPERIMENTAL STUDY

Static multi-cycling and profiling-driven multi-cycling were
applied to the CHStone HLS benchmark suite [8] and dhry-
stone. These benchmarks have built-in correctness checking
and input vectors representative of a standard workload. The

1 Schedule all operations using SDC ASAP formulation
2 Get all path separators and their scheduled state
3 for all path separators S do
4 B = the basic block containing S
5 freq = get_execution_frequency(B)
6 if freq < FREQ_THRESHOLD then
7 new_state = calculate_delayed_state(S, freq)
8 Add LP constraint: state[S] > new_state
9 end
10 end
Solve the new LP
Algorithm 2: Re-scheduling to extend latencies.

-
o

HLS scheduling was constrained to a target period of 6ns for
all circuits, which we observed to produce the lowest time-
area product both with and without multi-cycling. Experiments
target the Altera DE4 board which contains the Stratix IV
FPGA. Following HLS, benchmarks were synthesized, placed
and routed using the Quartus II software version 11.1. Post-
routing timing-driven simulation was executed to verify cor-
rectness of the schedule changes and multi-cycle constraints.

Table I shows the wall-clock time (cycle latency x clock
period) (in uS), F'Max (in MHz), cycle latency (in # cycles),
and area (Stratix IV ALMs (adaptive logic modules)) for three
flows. As a baseline, all circuits were generated using the lat-
est version of the LegUp HLS tool, to which the multi-cycling
optimizations were then applied. This baseline is shown in the
first set of columns (base). The second set of columns then
shows circuit speedups with static multi-cycling (static MC).
The final set of columns uses profiling-driven multi-cycling
(profiling-driven MC), where for each circuit we ran the algo-
rithm with a cutoff of 1%, 2%, and 3%. All cutoff frequencies
gave similar results but depending on the distribution of basic
blocks some frequencies worked best for different circuits. Fu-
ture work includes determining this cutoff automatically per-
circuit by analyzing the histogram in Fig. 4a.

As expected, not all circuits benefit equally from multi-
cycling due to critical paths not being in the datapath. For
example if there are large delays associated with FSM logic
or handling memory accesses then multi-cycling cannot pro-
vide speedups, and in fact adding additional latency attempt-
ing to improve data paths will slow circuits down. In these
circuits (jpeg, dfsin) the cutoff frequency of 0% was cho-
sen, i.e. falling back to static multi-cycling.

On the other hand, datapath-critical circuits speed up as
much as 30% from multi-cycling and an additional 17% from
software profiling. We observed that software profiling gives
its greatest speedups when the most timing-critical computa-
tions occur in infrequently executed basic blocks. Notice from
the geomeans that on average software profiling raises F'M ax
by ~13% over the baseline, while only increasing latency by
1%. Software profiling works well because it achieves clock
frequency speedups with very little increase to cycle latency,
as opposed to very large frequency speedups with a substan-
tial increase in latency. To see why this is, refer again to the
example in Fig. 4. Because most basic blocks execute infre-
quently, the largest “gap” between F'Max and cycles occurs
at low frequency cutoffs, i.e. F'Max “shoots upwards” sooner
than latency does because most of the basic blocks are concen-
trated at these low frequencies.

TABLE I
SPEED PERFORMANCE AND AREA RESULTS.

\ Base Static MC Profiling-Driven MC

‘ Time FMax Cycles ALMs ‘ Time FMax Cycles ALMs ‘ Time FMax Cycles ALMs
adpcm 178.8 146 26104 6351 126.1 207 26104 5599 118.1 226 26698 5664
aes 57.5 163 9372 8691 65.5 143 9372 7720 59.2 159 9410 7709
blowfish 981.2 190 186428 7010 981.2 190 186428 5447 981.2 190 186428 5447
dfadd 3.0 249 746 2071 3.0 251 746 1969 2.5 302 764 2007
dfdiv 9.1 215 1956 4343 7.2 272 1956 3229 6.8 289 1970 3192
dfmul 1.1 254 272 1478 0.9 292 272 1325 0.8 353 280 1358
dfsin 388.2 152 59132 12170 396.9 149 59132 11401 396.9 149 59132 11401
gsm 29.0 204 5906 4734 29.0 204 5906 4555 29.0 204 5906 4555
jpeg | 122715 102 1251692 15488 10979.8 114 1251692 14159 10979.8 114 1251692 14159
mips 23.6 264 6228 1646 222 281 6228 1523 21.9 285 6254 1519
motion 33.7 250 8420 2047 334 252 8420 1932 322 263 8460 1939
sha 1120.1 229 256500 5903 1176.6 218 256500 4982 1107.8 232.72 257805 5058
dhrystone 31.0 250 7760 2693 30.3 256 7760 2530 29.9 268 8020 2541

geomean 70.79 198.33 1404293 4420.12 66.90 209.90 1404293 3934.18 63.57 223.18 14187.82 3953.23
ratio 1.000 1.000 1.000 1.000 0.945 1.058 1.000 0.890 0.898 1.125 1.010 0.894

Some circuits exhibited the unbalanced paths discussed in
Section A. We circumvent this problem by adding a check
for excessively unbalanced paths and aborting the multi-cycle
flow if detected. This triggered for both blowfish and gsm,
which remain on par with the baseline. The check did not trig-
ger for aes however, which became 14% slower with static
multi-cycling. Profiling optimizations then improved the aes
wall-clock time by 11%, bringing it back towards the baseline.
Empirically, we disable multi-cycling when two paths sharing
source- and destination-separators have a slack difference of
40 cycles or more. We considered a more aggressive cutoff
(e.g. to “catch” aes) but in fact most circuits show some unbal-
anced paths and we prefer a more relaxed constraint to general-
ize well to other circuits (i.e. not “over-fit” to our benchmarks).

Multi-cycling also reduces total register usage by 26% (ge-
omean) due to de-pipelining. Combinational logic remains flat
(decreases by 1%), resulting in a total area reduction of 11%
(Stratix IV ALMs). Area-delay product is therefore improved
by 20% on average using profiling-driven multi-cycling rela-
tive to the baseline. Profiling-driven multi-cycling consumes
0.4% more ALMs than static mult-cycling, due to additional
FSM logic. One optimization to yield additional area savings
is a more judicious allocation of registers on memory output
ports. Because loads from global memory occur nearly every
clock cycle in most circuits, the loaded values cannot be fed
into multi-cycle paths. This problem was solved by inserting
a unique register between the memory output port and each
multi-cycle path, but an enhancement would be to only insert
these registers when the loaded values will not persist for the
duration of their multi-cycle.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we considered multi-cycling within high-level
synthesis for FPGAs and proposed the idea of using software
profiling to guide scheduling changes to improve multi-cycling
results. Specifically, our approach extends the hardware sched-
ules for code segments that are infrequently executed in a bid
to raise F'M ax with little increase to cycle latency. Results for
an Altera Stratix IV FPGA showed mean 10% wall-clock time

improvement, with datapath-critical circuits speeding up in ex-
cess of 30% from static multi-cycling and an additional 17%
from software profiling. Area was reduced by 11%, producing
an area-delay product improvement of 20%.

Future work involves combining multi-cycling with loop
pipelining, considering whether the F'M ax increase provided
by multi-cycling could justify higher loop initiation intervals.

REFERENCES

[1]1 OpenCL for Altera FPGAs,

http://www.altera.com/products/software/opencl/opencl-index.html.

[2] Xilinx: Vivado Design Suite,
http://www.xilinx.com/products/design_tools

/vivado/vivado-webpack.htm.

[3] H.Zheng, S. Gurumani, L. Yang, D. Chen, and K. Rupnow,
“High-level synthesis with behavioral level multi-cycle path analysis,”

in [EEE FPL, Porto, Portugal, 2013, pp. 1-8.

[4] Stratix-1V Data Sheet, Altera, Corp., 2014.

[5] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, J. Anderson,
S. Brown, and T. Czajkowski, “LegUp: high-level synthesis for
FPGA-based processor/accelerator systems,” in ACM/SIGDA FPGA,
2011, pp. 33-36.

[6] The LLVM Compiler Infrastructure Project (http://www.llvm.org),
LLVM, 2014.

[71 Altera: SDC and TimeQuest API Reference Manual,
http://www.altera.com/literature/manual/mnl_sdctmq.pdf.

[8] Y. Hara, H. Tomiyama, S. Honda, and H. Takada, “Proposal and

quantitative analysis of the CHStone benchmark program suite for
practical C-based high-level synthesis,” Journal of Information
Processing, vol. 17, no. 0, pp. 242 — 254, 2009.

[9] J. Cong and Z. Zhang, “An efficient and versatile scheduling algorithm

based on SDC formulation,” in IEEE/ACM DAC, 2006, pp. 433—438.

[10] H.Zheng, S. T. Gurumani, K. Rupnow, and D. Chen, “Fast and
Effective Placement and Routing Directed High-Level Synthesis for

FPGAs,” in ACM/SIGDA FPGA, 2014, pp. 1-10.

[11] J. Bhasker and R. Chadha, Static Timing Analysis for Nanometer

Designs, Springer, 2009, pp. 260-272.

